Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AIP Conf Proc ; 3062(1)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38516506

RESUMO

Two hydrodynamic effects are introduced in the standard transmission-line formalism, the focusing of the pressure and fluid velocity fields near the basilar membrane and the viscous damping at the fluid-basilar membrane interface, which significantly affect the cochlear response in the short-wave region. In this region, in which the wavelength is shorter than the cochlear duct height, only a layer of fluid of order of the wavelength is effectively involved in the traveling wave. This has been interpreted [8] as a reduced fluid contribution to the system inertia in the peak region, which is a viewpoint common to the 3-D FEM solutions. In this paper we propose an alternative approach, from a slightly different physical viewpoint. Invoking the fluid flux conservation along the traveling wave propagation direction, we can derive a rigorous propagation equation for the pressure integrated along the vertical axis. Consequently, the relation between the average pressure and the local pressure [4] at the fluid-BM interface can be written. The local pressure is amplified by a factor dependent on the local wavenumber with respect to the average pressure, a phenomenon we refer to as "fluid focusing", which plays a relevant role in the BM total amplification gain. This interpretation of the hydrodynamic boost to the pressure provides a physical justification to the strategy [10] of fitting the BM admittance with a polynomial containing both a conjugated pole and a zero. In the short-wave region, the sharp gradients of the velocity field yield a second important effect, a damping force on the BM motion, proportional to the local wavenumber, which stabilizes active models and shifts the peak of the response towards the base, with respect to the resonant place. This way, the peaked BM response is not that of a proper resonance, corresponding to a sharp maximum of the admittance, but rather a focusing-driven growth toward the resonant place, which is "aborted" before reaching it by the sharply increasing viscous losses. The large values of the wavenumber that ensure strong focusing are ultimately fueled, against viscosity, by the nonlinear OHC mechanism, hence the otherwise puzzling observation of a wide nonlinear gain dynamics with almost level-independent admittance.

2.
AIP Conf Proc ; 3062(1)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38516505

RESUMO

According to the dominant view, the mammalian cochlea spatially amplifies signals by actively pumping energy into the traveling wave. That is, signals are amplified as they propagate through a region where the medium's resistance is effectively negative. While signal amplification has been extensively studied in active cochlear models, the same cannot be said for amplification of internal noise. According to transmission-line theory, signals are amplified more than internal noise in regions where the net resistance is negative. Here we generalize this finding by showing that a distributed system composed of cascaded "noisy" amplifiers boosts signals more rapidly than the internal noise; the larger the amplifier gain, the larger the signal-to-noise ratio (SNR) of the amplified signal. We further show that this mechanism operates in existing active cochlear models: the cochlear amplifier increases the SNR of cochlear responses, and thus enhances cochlear sensitivity. When considering also that the cochlear amplifier narrows the bandwidth of the "cochlear filters", activation of the cochlear amplifiers dramatically increases the SNR (by about one order of magnitude in our simulations) from the tail to the peak of the traveling wave. We further demonstrate that the tapered ear-horn-like cochlear geometry significantly improves the SNR of basilar-membrane responses.

3.
Phys Rev Res ; 6(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525155

RESUMO

The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically arranged in three rows along the sensory epithelium, the OHCs work in concert via mechanisms collectively referred to as the "cochlear amplifier" to boost the cochlear response to faint sounds. While simplistic views attribute this enhancement solely to the OHC-based increase in cochlear gain, the inevitable presence of internal noise requires a more rigorous analysis. Achieving a genuine boost in sensitivity through amplification requires that signals be amplified more than internal noise, and this requirement presents the cochlea with an intriguing challenge. Here we analyze the effects of spatially distributed cochlear-like amplification on both signals and internal noise. By combining a straightforward mathematical analysis with a simplified model of cochlear mechanics designed to capture the essential physics, we generalize previous results about the impact of spatially coherent amplification on signal degradation in active gain media. We identify and describe the strategy employed by the cochlea to amplify signals more than internal noise and thereby enhance the sensitivity of hearing. For narrow-band signals, this effective, wave-based strategy consists of spatially amplifying the signal within a localized cochlear region, followed by rapid attenuation. Location-dependent wave amplification and attenuation meet the necessary conditions for amplifying near-characteristic frequency (CF) signals more than internal noise components of the same frequency. Our analysis reveals that the sharp wave cutoff past the CF location greatly reduces noise contamination. The distinctive asymmetric shape of the "cochlear filters" thus underlies a crucial but previously unrecognized mechanism of cochlear noise reduction.

4.
J Acoust Soc Am ; 154(5): 3414-3428, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015028

RESUMO

In this study, we explore nonlinear cochlear amplification by analyzing basilar membrane (BM) motion in the mouse apex. Through in vivo, postmortem, and mechanical suppression recordings, we estimate how the cochlear amplifier nonlinearly shapes the wavenumber of the BM traveling wave, specifically within a frequency range where the short-wave approximation holds. Our findings demonstrate that a straightforward mathematical model, depicting the cochlear amplifier as a wavenumber modifier with strength diminishing monotonically as BM displacement increases, effectively accounts for the various experimental observations. This empirically derived model is subsequently incorporated into a physics-based "overturned" framework of cochlear amplification [see Altoè, Dewey, Charaziak, Oghalai, and Shera (2022), J. Acoust. Soc. Am. 152, 2227-2239] and tested against additional experimental data. Our results demonstrate that the relationships established within the short-wave region remain valid over a much broader frequency range. Furthermore, the model, now exclusively calibrated to BM data, predicts the behavior of the opposing side of the cochlear partition, aligning well with recent experimental observations. The success in reproducing key features of the experimental data and the mathematical simplicity of the resulting model provide strong support for the "overturned" theory of cochlear amplification.


Assuntos
Membrana Basilar , Cóclea , Animais , Camundongos , Amplificadores Eletrônicos , Movimento (Física) , Ondas de Rádio
5.
Proc Natl Acad Sci U S A ; 120(41): e2305921120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796989

RESUMO

The intricate, crystalline cytoarchitecture of the mammalian organ of Corti presumably plays an important role in cochlear amplification. As currently understood, the oblique, Y-shaped arrangement of the outer hair cells (OHCs) and phalangeal processes of the Deiters cells serves to create differential "push-pull" forces that drive the motion of the basilar membrane via the spatial feedforward and/or feedbackward of OHC forces. In concert with the cochlear traveling wave, the longitudinal separation between OHC sensing and forcing creates phase shifts that yield a form of negative damping, amplifying waves as they propagate. Unlike active forces that arise and act locally, push-pull forces are inherently directional-whereas forward-traveling waves are boosted, reverse-traveling waves are squelched. Despite their attractions, models based on push-pull amplification must contend with otoacoustic emissions (OAEs), whose existence implies that amplified energy escapes from the inner ear via mechanisms involving reverse traveling waves. We analyze hybrid local/push-pull models to determine the constraints that reflection-source OAEs place on the directionality of cochlear wave propagation. By implementing a special force-mixing control knob, we vary the mix of local and push-pull forces while leaving the forward-traveling wave unchanged. Consistency with stimulus-frequency OAEs requires that the active forces underlying cochlear wave amplification be primarily local in character, contradicting the prevailing view. By requiring that the oblique cytoarchitecture produce predominantly local forces, we reinterpret the functional role of the Y-shaped geometry, proposing that it serves not as a push-pull amplifier, but as a mechanical funnel that spatially integrates local OHC forces.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Animais , Membrana Basilar , Células Ciliadas Auditivas Externas , Osso e Ossos , Mamíferos
6.
ArXiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37502623

RESUMO

The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically arranged in three rows along the sensory epithelium, the OHCs work in concert via mechanisms collectively referred to as the "cochlear amplifier" to boost the cochlear response to faint sounds. While simplistic views attribute this enhancement solely to the OHC-based increase in cochlear gain, the inevitable presence of internal noise requires a more rigorous analysis. Achieving a genuine boost in sensitivity through amplification requires that signals be amplified more than internal noise, and this requirement presents the cochlea with an intriguing challenge. Here, we analyze the effects of spatially distributed cochlear-like amplification on both signals and internal noise. By combining a straightforward but powerful mathematical analysis with a simplified model of cochlear mechanics designed to capture the essential physics, we generalize previous results about the impact of spatially coherent amplification on signal degradation in active gain media. We identify and describe the strategy employed by the cochlea to amplify signals more than internal noise and thereby enhance the sensitivity of hearing. For narrowband signals, this elegant, wave-based strategy consists of spatially amplifying the signal within a localized cochlear region, followed by rapid attenuation. Location-dependent wave amplification and attenuation meet the necessary conditions for amplifying near-characteristic frequency (CF) signals more than internal noise components of the same frequency. Our analysis reveals that the sharp wave cut-off past the CF location greatly reduces noise contamination. The distinctive asymmetric shape of the "cochlear filters" thus underlies a crucial but previously unrecognized mechanism of cochlear noise reduction.

7.
J Acoust Soc Am ; 153(4): 2251, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092917

RESUMO

Cochlear mechanics tends to be studied using single-location measurements of intracochlear vibrations in response to acoustical stimuli. Such measurements, due to their invasiveness and often the instability of the animal preparation, are difficult to accomplish and, thus, ideally require stimulus paradigms that are time efficient, flexible, and result in high resolution transfer functions. Here, a swept-sine method is adapted for recordings of basilar membrane impulse responses in mice. The frequency of the stimulus was exponentially swept from low to high (upward) or high to low (downward) at varying rates (from slow to fast) and intensities. The cochlear response to the swept-sine was then convolved with the time-reversed stimulus waveform to obtain first and higher order impulse responses. Slow sweeps of either direction produce cochlear first to third order transfer functions equivalent to those measured with pure tones. Fast upward sweeps, on the other hand, generate impulse responses that typically ring longer, as observed in responses obtained using clicks. The ringing of impulse response in mice was of relatively small amplitude and did not affect the magnitude spectra. It is concluded that swept-sine methods offer flexible and time-efficient alternatives to other approaches for recording cochlear impulse responses.


Assuntos
Membrana Basilar , Cóclea , Camundongos , Animais , Cóclea/fisiologia , Estimulação Acústica/métodos
8.
J Assoc Res Otolaryngol ; 24(2): 129-145, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725778

RESUMO

The cochlea of the mammalian inner ear includes an active, hydromechanical amplifier thought to arise via the piezoelectric action of the outer hair cells (OHCs). A classic problem of cochlear biophysics is that the RC (resistance-capacitance) time constant of the hair-cell membrane appears inconveniently long, producing an effective cut-off frequency much lower than that of most audible sounds. The long RC time constant implies that the OHC receptor potential-and hence its electromotile response-decreases by roughly two orders of magnitude over the frequency range of mammalian hearing, casting doubt on the hypothesized role of cycle-by-cycle OHC-based amplification in mammalian hearing. Here, we review published data and basic physics to show that the "RC problem" has been magnified by viewing it through the wrong lens. Our analysis finds no appreciable mismatch between the expected magnitude of high-frequency electromotility and the sound-evoked displacements of the organ of Corti. Rather than precluding significant OHC-based boosts to auditory sensitivity, the long RC time constant appears beneficial for hearing, reducing the effects of internal noise and distortion while increasing the fidelity of cochlear amplification.


Assuntos
Cóclea , Células Ciliadas Auditivas Externas , Animais , Células Ciliadas Auditivas Externas/fisiologia , Cóclea/fisiologia , Audição/fisiologia , Som , Mamíferos
9.
J Acoust Soc Am ; 153(1): 77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732225

RESUMO

This study uses a 3-D representation of the cochlear fluid to extend the results of a recent paper [Sisto, Belardinelli, and Moleti (2021b). J. Acoust. Soc. Am. 150, 4283-4296] in which two hydrodynamic effects, pressure focusing and viscous damping of the BM motion, both associated with the sharp increase in the wavenumber in the peak region, were analyzed for a 2-D fluid, coupled to a standard 1-D transmission-line WKB approach to cochlear modeling. The propagation equation is obtained from a 3-D fluid volume conservation equation, yielding the focusing effect, and the effect of viscosity is represented as a correction to the local 1-D admittance. In particular, pressure focusing amplifies the BM response without modifying the peak admittance, and viscous damping determines the position of the response peak counteracting focusing, as sharp gradients of the velocity field develop. The full 3-D WKB formalism is necessary to represent satisfactorily the behavior of the fluid velocity field near the BM-fluid interface, strictly related to viscous losses. As in finite element models, a thin layer of fluid is effectively attached to the BM due to viscosity, and the viscous force associated with the vertical gradient of the fluid vertical velocity acts on the BM through this layer.


Assuntos
Cóclea , Hidrodinâmica , Viscosidade , Cóclea/fisiologia , Movimento (Física)
10.
J Assoc Res Otolaryngol ; 24(2): 117-127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36648734

RESUMO

In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology. Here, we bring together examples of current research that illustrate the continuing impact of the discovery of OHC electromotility.


Assuntos
Cóclea , Células Ciliadas Auditivas Externas , Animais , Células Ciliadas Auditivas Externas/fisiologia , Audição/fisiologia , Mamíferos
11.
J Acoust Soc Am ; 152(4): 2227, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36319240

RESUMO

The mammalian ear embeds a cellular amplifier that boosts sound-induced hydromechanical waves as they propagate along the cochlea. The operation of this amplifier is not fully understood and is difficult to disentangle experimentally. In the prevailing view, cochlear waves are amplified by the piezo-electric action of the outer hair cells (OHCs), whose cycle-by-cycle elongations and contractions inject power into the local motion of the basilar membrane (BM). Concomitant deformations of the opposing (or "top") side of the organ of Corti are assumed to play a minor role and are generally neglected. However, analysis of intracochlear motions obtained using optical coherence tomography calls this prevailing view into question. In particular, the analysis suggests that (i) the net local power transfer from the OHCs to the BM is either negative or highly inefficient; and (ii) vibration of the top side of the organ of Corti plays a primary role in traveling-wave amplification. A phenomenological model derived from these observations manifests realistic cochlear responses and suggests that amplification arises almost entirely from OHC-induced deformations of the top side of the organ of Corti. In effect, the model turns classic assumptions about spatial impedance relations and power-flow direction within the sensory epithelium upside down.


Assuntos
Cóclea , Órgão Espiral , Animais , Órgão Espiral/fisiologia , Cóclea/fisiologia , Membrana Basilar/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Som , Vibração , Mamíferos
12.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686590

RESUMO

Mammalian hearing depends on an amplification process involving prestin, a voltage-sensitive motor protein that enables cochlear outer hair cells (OHCs) to change length and generate force. However, it has been questioned whether this prestin-based somatic electromotility can operate fast enough in vivo to amplify cochlear vibrations at the high frequencies that mammals hear. In this study, we measured sound-evoked vibrations from within the living mouse cochlea and found that the top and bottom of the OHCs move in opposite directions at frequencies exceeding 20 kHz, consistent with fast somatic length changes. These motions are physiologically vulnerable, depend on prestin, and dominate the cochlea's vibratory response to high-frequency sound. This dominance was observed despite mechanisms that clearly low-pass filter the in vivo electromotile response. Low-pass filtering therefore does not critically limit the OHC's ability to move the organ of Corti on a cycle-by-cycle basis. Our data argue that electromotility serves as the primary high-frequency amplifying mechanism within the mammalian cochlea.


Assuntos
Células Ciliadas Auditivas Externas/fisiologia , Órgão Espiral/fisiologia , Estimulação Acústica , Animais , Cóclea/fisiologia , Eletrofisiologia , Feminino , Audição/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Mutantes , Modelos Biológicos , Proteínas Motores Moleculares/deficiência , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/fisiologia , Movimento/fisiologia , Dinâmica não Linear , Som , Tomografia de Coerência Óptica , Vibração
13.
J Assoc Res Otolaryngol ; 22(6): 623-640, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34677710

RESUMO

The mammalian cochlea achieves its remarkable sensitivity, frequency selectivity, and dynamic range by spatially segregating the different frequency components of sound via nonlinear processes that remain only partially understood. As a consequence of the wave-based nature of cochlear processing, the different frequency components of complex sounds interact spatially and nonlinearly, mutually suppressing one another as they propagate. Because understanding nonlinear wave interactions and their effects on hearing appears to require mathematically complex or computationally intensive models, theories of hearing that do not deal specifically with cochlear mechanics have often neglected the spatial nature of suppression phenomena. Here we describe a simple framework consisting of a nonlinear traveling-wave model whose spatial response properties can be estimated from basilar-membrane (BM) transfer functions. Without invoking jazzy details of organ-of-Corti mechanics, the model accounts well for the peculiar frequency-dependence of suppression found in two-tone suppression experiments. In particular, our analysis shows that near the peak of the traveling wave, the amplitude of the BM response depends primarily on the nonlinear properties of the traveling wave in more basal (high-frequency) regions. The proposed framework provides perhaps the simplest representation of cochlear signal processing that accounts for the spatially distributed effects of nonlinear wave propagation. Shifting the perspective from local filters to non-local, spatially distributed processes not only elucidates the character of cochlear signal processing, but also has important consequences for interpreting psychophysical experiments.


Assuntos
Membrana Basilar , Cóclea/fisiologia , Mascaramento Perceptivo , Animais , Limiar Auditivo , Audição , Som
14.
Sci Rep ; 10(1): 20528, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239701

RESUMO

While separating sounds into frequency components and subsequently converting them into patterns of neural firing, the mammalian cochlea processes signal components in ways that depend strongly on frequency. Indeed, both the temporal structure of the response to transient stimuli and the sharpness of frequency tuning differ dramatically between the apical and basal (i.e., the low- and high-frequency) regions of the cochlea. Although the mechanisms that give rise to these pronounced differences remain incompletely understood, they are generally attributed to tonotopic variations in the constituent hair cells or cytoarchitecture of the organ of Corti. As counterpoint to this view, we present a general acoustic treatment of the horn-like geometry of the cochlea, accompanied by a simple 3-D model to elucidate the theoretical predictions. We show that the main apical/basal functional differences can be accounted for by the known spatial gradients of cochlear dimensions, without the need to invoke mechanical specializations of the sensory tissue. Furthermore, our analysis demonstrates that through its functional resemblance to an ear horn (aka ear trumpet), the geometry of the cochlear duct manifests tapering symmetry, a felicitous design principle that may have evolved not only to aid the analysis of natural sounds but to enhance the sensitivity of hearing.


Assuntos
Percepção Auditiva , Cóclea/anatomia & histologia , Cóclea/fisiologia , Som , Acústica , Animais , Membrana Basilar/fisiologia , Mamíferos/fisiologia , Modelos Biológicos
15.
Cell Rep ; 32(1): 107869, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640234

RESUMO

Auditory inner hair cells (IHCs) convert sound vibrations into receptor potentials that drive synaptic transmission. For the precise encoding of sound qualities, receptor potentials are shaped by K+ conductances tuning the properties of the IHC membrane. Using patch-clamp and computational modeling, we unravel this membrane specialization showing that IHCs express an exclusive repertoire of six voltage-dependent K+ conductances mediated by Kv1.8, Kv7.4, Kv11.1, Kv12.1, and BKCa channels. All channels are active at rest but are triggered differentially during sound stimulation. This enables non-saturating tuning over a far larger potential range than in IHCs expressing fewer current entities. Each conductance contributes to optimizing responses, but the combined activity of all channels synergistically improves phase locking and the dynamic range of intensities that IHCs can encode. Conversely, hypothetical simpler IHCs appear limited to encode only certain aspects (frequency or intensity). The exclusive channel repertoire of IHCs thus constitutes an evolutionary adaptation to encode complex sound through multifaceted receptor potentials.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Canais de Potássio/metabolismo , Som , 4-Aminopiridina/farmacologia , Animais , Células CHO , Cricetulus , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo
16.
J Assoc Res Otolaryngol ; 21(2): 151-170, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32166602

RESUMO

The cochlea's wave-based signal processing allows it to efficiently decompose a complex acoustic waveform into frequency components. Because cochlear responses are nonlinear, the waves arising from one frequency component of a complex sound can be altered by the presence of others that overlap with it in time and space (e.g., two-tone suppression). Here, we investigate the suppression of basilar-membrane (BM) velocity responses to a transient signal (a test click) by another click or tone. We show that the BM response to the click can be reduced when the stimulus is shortly preceded or followed by another (suppressor) click. More surprisingly, the data reveal two curious dependencies on the interclick interval, Δt. First, the temporal suppression curve (amount of suppression vs. Δt) manifests a pronounced and nearly periodic microstructure. Second, temporal suppression is generally strongest not when the two clicks are presented simultaneously (Δt = 0), but when the suppressor click precedes the test click by a time interval corresponding to one to two periods of the best frequency (BF) at the measurement location. By systematically varying the phase of the suppressor click, we demonstrate that the suppression microstructure arises from alternating constructive and destructive interference between the BM responses to the two clicks. And by comparing temporal and tonal suppression in the same animals, we test the hypothesis that the asymmetry of the temporal-suppression curve around Δt = 0 stems from cochlear dispersion and the well-known asymmetry of tonal suppression around the BF. Just as for two-tone suppression, BM responses to clicks are most suppressed by tones at frequencies just above the BF of the measurement location. On average, the frequency place of maximal suppressibility of the click response predicted from temporal-suppression data agrees with the frequency at which tonal suppression peaks, consistent with our hypothesis.


Assuntos
Membrana Basilar/metabolismo , Audição/fisiologia , Algoritmos , Animais , Gerbillinae
17.
Phys Rev Res ; 2(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33403361

RESUMO

Recent in vivo recordings from the mammalian cochlea indicate that although the motion of the basilar membrane appears actively amplified and nonlinear only at frequencies relatively close to the peak of the response, the internal motions of the organ of Corti display these same features over a much wider range of frequencies. These experimental findings are not easily explained by the textbook view of cochlear mechanics, in which cochlear amplification is controlled by the motion of the basilar membrane (BM) in a tight, closed-loop feedback configuration. This study shows that a simple phenomenological model of the cochlea inspired by the work of Zweig [J. Acoust. Soc. Am. 138, 1102 (2015)] can account for recent data in mouse and gerbil. In this model, the active forces are regulated indirectly, through the effect of BM motion on the pressure field across the cochlear partition, rather than via direct coupling between active-force generation and BM vibration. The absence of strong vibration-amplification feedback in the cochlea also provides a compelling explanation for the observed intensity invariance of fine time structure in the BM response to acoustic clicks.

18.
J Acoust Soc Am ; 146(3): 1685, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31590512

RESUMO

The zero crossings of basilar-membrane (BM) responses to clicks are nearly independent of stimulus intensity. This work explores the constraints that this invariance imposes on one-dimensional nonlinear cochlear models with two degrees of freedom (2DoF). The locations of the poles and zeros of the BM admittance, calculated for a set of linear models in which the strength of the active force is progressively decreased, provides a playground for evaluating the behavior of a corresponding nonlinear model at increasing stimulus levels. Mathematical constraints on the model parameters are derived by requiring that the poles of the admittance move horizontally in the s-plane as the active force is varied. These constraints ensure approximate zero-crossing invariance over a wide stimulus level range in a nonlinear model in which the active force varies as a function of the local instantaneous BM displacement and velocity. Two different 2DoF models are explored, each capable of reproducing the main qualitative characteristics of the BM response to tones (i.e., the tall and broad activity pattern at low stimulus levels, the large gain dynamics, and the partial decoupling between gain and phase). In each model, the motions of the two masses are compared with response data from animal experiments.


Assuntos
Membrana Basilar/fisiologia , Modelos Teóricos , Humanos
19.
Hear Res ; 364: 68-80, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678326

RESUMO

The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca2+ gated outward K+ currents. To quantify how the voltage-dependent activation of the K+ channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K+ conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K+ channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K+ channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse.


Assuntos
Membrana Celular/metabolismo , Cóclea/inervação , Nervo Coclear/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Audição , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Modelos Neurológicos , Potássio/metabolismo , Estimulação Acústica , Animais , Humanos , Mecanotransdução Celular , Potenciais da Membrana , Dinâmica não Linear , Transmissão Sináptica , Fatores de Tempo , Vibração
20.
Hear Res ; 360: 55-75, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29472062

RESUMO

Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features.


Assuntos
Vias Auditivas/fisiopatologia , Potenciais Evocados Auditivos , Perda Auditiva/fisiopatologia , Audição , Modelos Neurológicos , Estimulação Acústica , Percepção Auditiva , Simulação por Computador , Perda Auditiva/psicologia , Humanos , Pessoas com Deficiência Auditiva/psicologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...